

Mercury Oxidation across SCRs in Coal-Fired Power Plants

Connie Senior Reaction Engineering International

Mercury Control Technology R&D Program Review Pittsburgh, PA

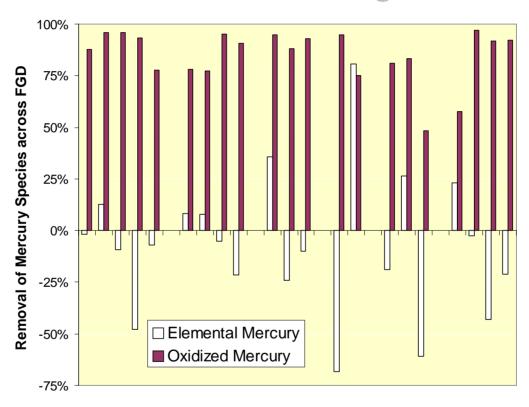
July 12014, 2005

Presentation Outline

- Rationale for model
- ➤ Model specifics
- ➤ Validation
- **>** Summary

Acknowledgements:

DOE/NETL, EPRI, Argillon AEP (slipstream reactor support)

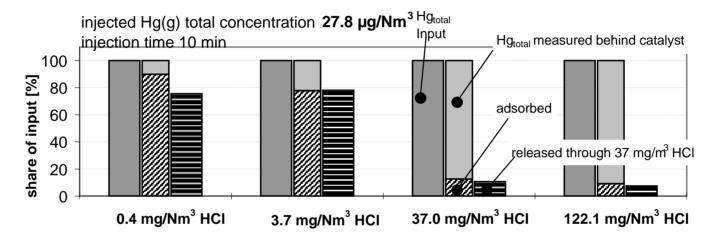

Hg⁰ Oxidation Across SCRs

- ➤ Full-scale data
- SCRs oxidize mercury
- Chlorine content of coal influences oxidation

Mercury Speciation in Combustion Systems

- Wet scrubbers remove:
 - > ~90% of Hg⁺²
 - > <25% of Hg⁰
- > SCR + scrubber as control device?

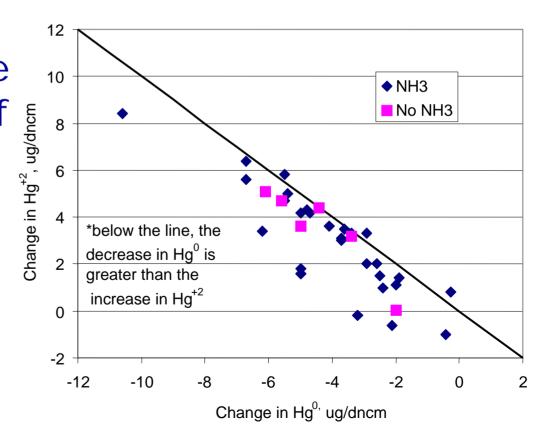
Source: ICR data


Review of Lab, Pilot and Full-Scale Data

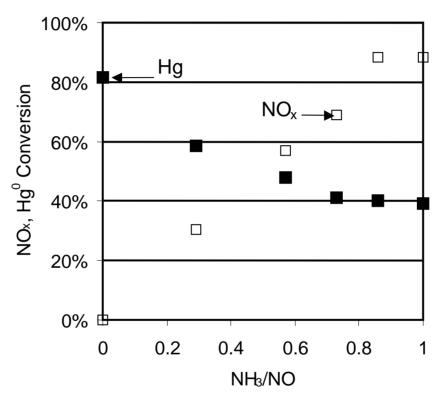
- Laboratory data
 - Effects of temperature, ammonia,
 HCI, space velocity
 - Adsorption of Hg⁰
- ➤ Pilot data
 - Effects of temperature, ammonia, space velocity, flue gas
 - Transients

SCR Catalysts Adsorb Hg⁰

➤ Lab data from Hocquel et al.

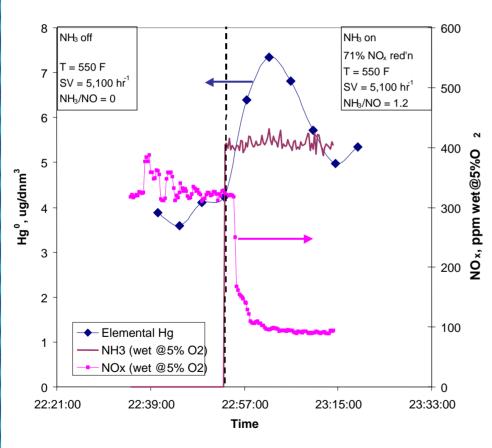


- ➤ Net adsorption of Hg⁰ by catalyst in tenminute experiments
- ➤ Amount of Hg⁰ adsorbed decreased with increasing HCl concentration
- ➤ HCl interferes with Hg⁰ adsorption?


Adsorption of Hg

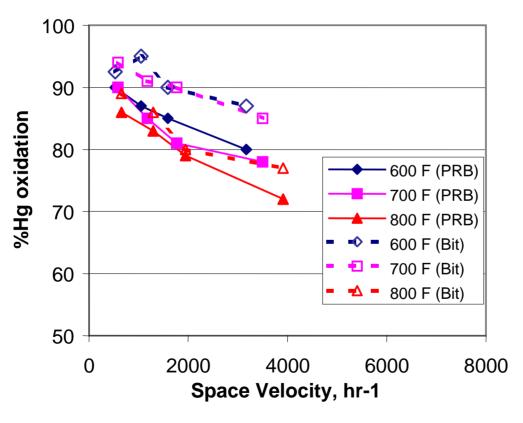
- Adsorption of Hg observed in fullscale measurements?
- ➤ Yes, in some cases loss of Hg⁰ higher than gain of Hg⁺² across SCR

Ammonia Affects Hg⁰ Adsorption



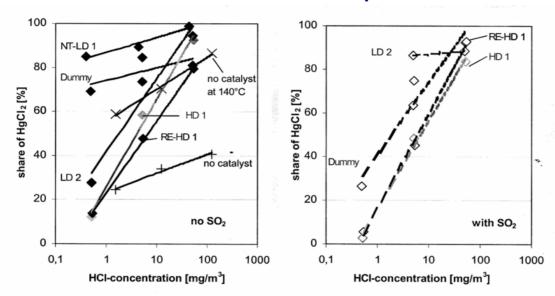
- ➤ Slipstream data (Machalek et al.)
- ➤ Pilot-scale SCR with PRB flue gas
- > Ammonia decreased Hg⁰ oxidation

Ammonia Affects Hg⁰ Adsorption



- Transient from Rockport
- Turning
 ammonia on
 causes spike in
 Hg⁰
- ➤ NH₃ interferes with Hg⁰ adsorption

Temperature Affects Oxidation Pilot-Scale

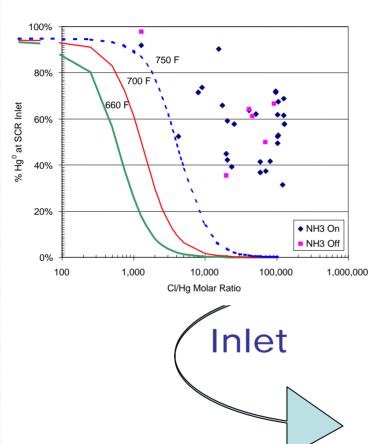


- Pilot-scale
 SCR
 (Richardson et al.)
- Oxidation
 decreases
 when
 temperature
 increases

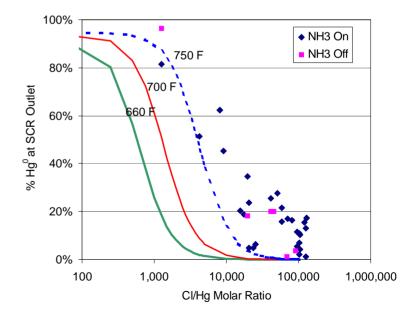
HCI Promotes Hg⁰ Oxidation

➤ Lab data from Hocquel et al.

- ➤ Increasing HCl content of simulated flue gas increases oxidation
- ➤ Little effect of SO₂
- ➤ HCl reacts with adsorbed Hg⁰ or is itself adsorbed?



Computational Approach


- ➤ Goal: Predict Hg⁰ oxidation across SCR catalyst
- **≻**Observations:
 - Hg not at equilibrium at SCR exit
 - Hg adsorption and oxidation sensitive to ammonia concentration
 - Hg oxidation affected by concentration of chlorine species (largely HCl)

Hg Speciation at SCR Temperatures

Hg not at equilibrium at SCR exit

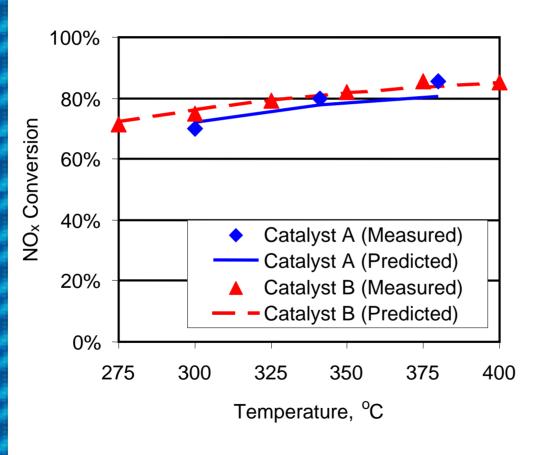
Outlet

Computational Approach

- ➤ Hg adsorption and oxidation sensitive to ammonia concentration
 - ➤ Need to model distribution of ammonia in catalyst:
 - First-order NO kinetics
 - ➤ Mass transfer:
 - ➤ Along channel
 - ➤ Within porous catalyst

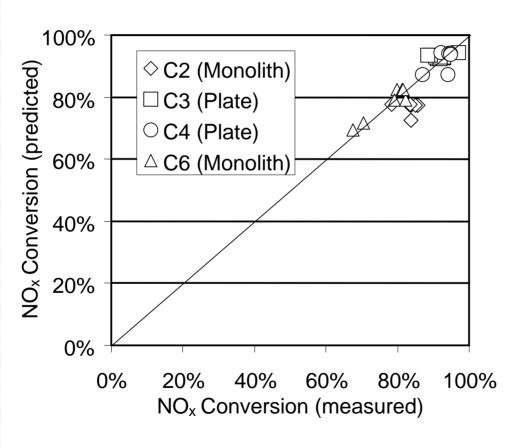
Computational Approach

➤ Hg adsorption and oxidation sensitive to ammonia concentration


➤ Distribution of NO along catalyst channel:

$$y_i(z) = y_{i,o} \exp \left[-\left(\frac{Pz}{uA}\right) \frac{1}{\frac{1}{k_m} - \frac{1}{\sqrt{D_i^e ka}} \left(\frac{e^{-2\Phi} + 1}{e^{-2\Phi} - 1}\right)} \right]$$

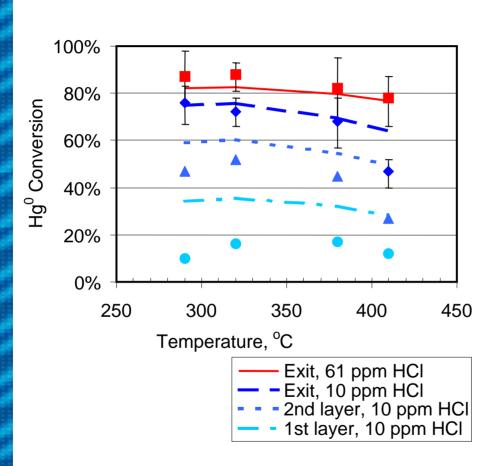
➤ Distribution of NH₃ follows stoichiometry of NO reduction


NO Reduction Model

- Lab data from Beeckman and Hegedus
- Two
 monolith
 catalysts,
 simulated
 flue gas

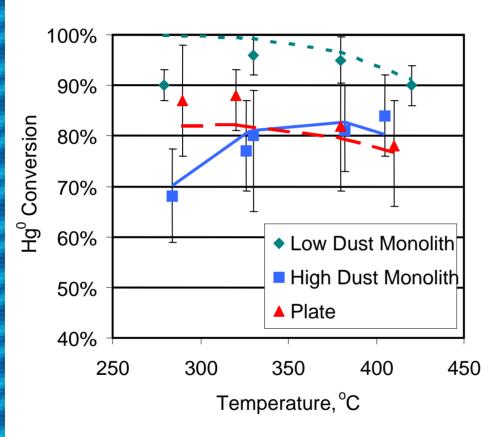
NO Reduction Model

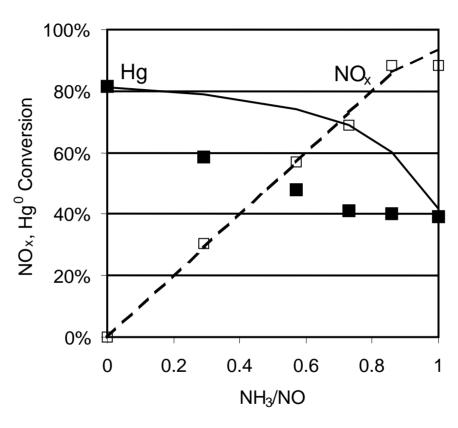
- Slipstream data from Rockport Unit 1
- Two monolith catalysts, two plate catalysts



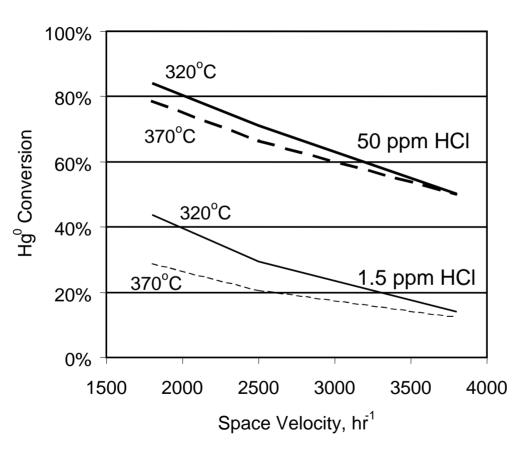
Computational Approach

- ➤ Hg oxidation affected by concentration of chlorine species (largely HCI)
- ➤ Reaction of adsorbed Hg⁰ with HCl_(g)
- ➤ Competition with NH₃ for surface sites
- > Rate of oxidation:


$$r = \frac{k_o e^{-E/RT} K_{Hg} y_{Hg} y_{HCl}}{(1 + K_{NH_3} y_{NH_3})}$$


- Lab data of Hoquel
- 3 layers of commercial plate catalyst
- Simulated flue gas
 - Two HCl levels
- Hg, NO measurements made in between layers

- Lab data of Hoquel
- Commercial plate and monolith catalysts
- Simulated flue gas
- No NO measurements report for monolith
- Effects of mass transfer, catalyst design


- Slipstream data (Machalek et al.)
- ➤ Pilot-scale SCR with PRB flue gas
- > Ammonia decreased Hg⁰ oxidation

	SV, hr ⁻¹	NH ₃ /NO	Avg T, °C	Observed	Pred.
C2	5,037	1.7	321	6% ± 10%	13%
(Monolith)	5,051	0.0	326	61% ± 13%	44%
C3	1,927	2.1	327	4% ± 22%	87%
(Plate)	2,439	0.0	333	83% ± 5%	80%
C4	3,992	1.2	347	52% ± 7%	57%
(Plate)	2,353	0.0	334	83% ± 10%	81%
C6	3,915	1.2	337	10% ± 13%	34%
(Monolith)	2,219	0.0	325	75% ± 5%	76%

- Data of from slipstream reactor, Rockport 1
- Trends with and without NH₃

- Example, monolith catalysts
- \rightarrow NH₃/NO=0.9
- Effects of SV, chlorine, temperature

Summary

- ➤ Model of Hg⁰ oxidation across SCR catalysts fits laboratory and slipstream data
 - Activation energies fixed; preexponential factors related to NO reduction
 - Explains non-linear temperaturedependence
 - Effects of ammonia, HCl content, space velocity and catalyst design included